The wisdom of crowds for visual search.

نویسندگان

  • Mordechai Z Juni
  • Miguel P Eckstein
چکیده

Decision-making accuracy typically increases through collective integration of people's judgments into group decisions, a phenomenon known as the wisdom of crowds. For simple perceptual laboratory tasks, classic signal detection theory specifies the upper limit for collective integration benefits obtained by weighted averaging of people's confidences, and simple majority voting can often approximate that limit. Life-critical perceptual decisions often involve searching large image data (e.g., medical, security, and aerial imagery), but the expected benefits and merits of using different pooling algorithms are unknown for such tasks. Here, we show that expected pooling benefits are significantly greater for visual search than for single-location perceptual tasks and the prediction given by classic signal detection theory. In addition, we show that simple majority voting obtains inferior accuracy benefits for visual search relative to averaging and weighted averaging of observers' confidences. Analysis of gaze behavior across observers suggests that the greater collective integration benefits for visual search arise from an interaction between the foveated properties of the human visual system (high foveal acuity and low peripheral acuity) and observers' nonexhaustive search patterns, and can be predicted by an extended signal detection theory framework with trial to trial sampling from a varying mixture of high and low target detectabilities across observers (SDT-MIX). These findings advance our theoretical understanding of how to predict and enhance the wisdom of crowds for real world search tasks and could apply more generally to any decision-making task for which the minority of group members with high expertise varies from decision to decision.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Comparison of Small Crowd Selection Methods

The literature on the wisdom of crowds argues that in most situations, the aggregated judgments of a large crowd perform well relative to the average individual. There are, however, many real-world cases where crowds perform poorly. A small crowd literature has since developed, finding that better performing small crowds often exist within whole crowds. We compare previously proposed small crow...

متن کامل

Intuitive Biases in Choice versus Estimation: Implications for the Wisdom of Crowds

Although researchers have documented many instances of crowd wisdom, it is important to know whether some kinds of judgments may lead the crowd astray, whether crowds’ judgments improve with feedback over time, and whether crowds’ judgments can be improved by changing the way judgments are elicited. We investigated these questions in a sports gambling context (predictions against point spreads)...

متن کامل

Testing the stability of "wisdom of crowds" judgments of search results over time and their similarity with the search engine rankings

Purpose: One of the under-explored aspects in the process of user information seeking behaviour is influence of time on relevance evaluation. It has been shown in previous studies that individual users might change their assessment of search results over time. It is also known that aggregated judgments of multiple individual users can lead to correct and reliable decisions; this phenomenon is k...

متن کامل

Wised Semi-Supervised Cluster Ensemble Selection: A New Framework for Selecting and Combing Multiple Partitions Based on Prior knowledge

The Wisdom of Crowds, an innovative theory described in social science, claims that the aggregate decisions made by a group will often be better than those of its individual members if the four fundamental criteria of this theory are satisfied. This theory used for in clustering problems. Previous researches showed that this theory can significantly increase the stability and performance of...

متن کامل

The Search for Peer Firms: When Do Crowds Provide Wisdom?

In knowledge-based economies, many businesses enterprises defy traditional industry boundaries. In this study, we evaluate six “big data” approaches to peer firm identifications and show that some, but not all, “wisdom-of-crowd” techniques perform exceptionally well. We propose an analytical framework for understanding when crowds can be expected to provide wisdom and show, theoretically and em...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 114 21  شماره 

صفحات  -

تاریخ انتشار 2017